Inteligencia artificial es el término de moda en tecnología, esa palabra que ya nunca falta en ninguna presentación. Junto a machine learning o deep learning, se ha convertido en una buzzword. Hoy, en la presentación del nuevo Huawei Mate 10 ha ocupado una buena porción de la presentación, pues como ya sabíamos, el terminal es el primero en llegar con una unidad de procesamiento neural (NPU) dedicada a cálculos de inteligencia artificial. Es el valor añadido con el que Huawei quiere diferenciar su nuevo chip, el Kirin 970.
Sobre el papel, lo primero que afirma Huawei es que el NPU es 25 veces más potente que la CPU de 8 núcleos convencional del Huawei Mate 10 en lo que a cálculo relacionado con inteligencia artificial respecta. La GPU, por ejemplo, sólo es 4 veces más potente en esas tareas que la CPU, es decir, que la diferencia entre los tres tipos de procesador a la hora de hacer estos cálculos es inmensa. Lo segundo relevante es que, mientras los realiza, es 50 veces más eficiente energéticamente. Dicho así suena impresionante, pero ¿a qué tipo de actividades en concreto se refieren en el terminal? ¿qué puede hacer a día de hoy?
Huawei presenta los Mate 10: menos marcos, misma esencia
Huawei pone mucho énfasis en la velocidad y potencia que el NPU ofrece en tareas como el reconocimiento de imágenes o reconocimiento de lenguaje natural. En ese sentido, el Huawei Mate 10 obtuvo 2005 puntos en un benchmark de velocidad de reconocimiento de imágenes, frente al iPhone X, que alcanzó 900 puntos o el Samsung Galaxy S8, que se quedó en 75. En un test realizando con la CPU del Kirin 970, el Mate 10 finalizó en 120 segundos, mientras que empleando la NPU, el tiempo bajó hasta 6 segundos.
Inteligencia artificial móvil a día de hoy
El Huawei Mate 10 llegará al mercado con pocas utilidades prácticas en lo que respecta a inteligencia artificial aprovechable por el usuario. Huawei ha llegado a un acuerdo con Microsoft para disponer de Microsoft Translator de manera offline, siendo acelerado en un 300% por el NPU. Huawei ha afirmado durante la presentación que trabajarán con Google para que Translate también pueda acelerarse mediante el NPU.
Donde a priori más relevancia tendrá el NPU será en la cámara, con lo que Huawei ha llamado AI Engine. El terminal es capaz de detectar cuál de los 14 modos de captura es más adecuado. Por ejemplo, de noche activaría el modo noche, y si detecta caras, activaría el modo retrato (aunque no el desenfoque profundo o bokeh, en el que por cierto también hay mejor reconocimiento de bordes). Además de todo esto, la inteligencia artificial ayudará a ajustar mejor valores como la exposición o el tiempo de captura, con lo que los resultados serán mejores que en terminales similares sin ayuda externa de este tipo.
La cámara también incluye capacidad de reconocimiento de imágenes y objetos, gracias a un entrenamiento realizado con más de 100 millones de imágenes. En ese sentido, la apuesta es similar a la de Bixby.
Saliendo de la cámara, Huawei habla de que el NPU aprenderá los patrones de uso del usuario y ofrecerá consejos buscando ayudar. Lo más relevante, sin embargo, son las optimizaciones hechas en el sistema para ajustar el rendimiento y valores como la frecuencia de reloj según se requiera. Es algo que, por ejemplo, se pondrá en práctica en la carga, ajustando inteligentemente voltaje dependiendo de cómo se use normalmente el dispositivo.
La inteligencia artificial móvil en el futuro
Cuando hemos hablado de inteligencia artificial móvil nos referimos a la que ocurre localmente, que es la que promueven compañías como Huawei o Apple. La ventaja es que hay menor riesgo de sufrir robos de datos, la privacidad es mucho mayor que si la inteligencia artificial y el aprendizaje quedan ligados a una cuenta en la nube, que son las bases del modelo de Google.
Hay que dejar esto claro, pues cualquier móvil ya recibe información fruto de cálculos hechos con inteligencia artificial, pero la diferencia es que se llevan a cabo en los servidores de Google.
Para expandir el ecosistema a más funciones de las nombradas, Huawei ha hecho el NPU compatible con TensorFlow Lite y Caffe2, librerías que permiten a los desarrolladores construir apps basadas en modelos de aprendizaje automático. La primera, nacida de la mano de Google, se libera a final de año.
Se trata de algo muy importante, pues los desarrolladores no tendrán que escribir código en exclusiva para el NPU del Huawei Mate 10, sino que será compatible con todas las apps de inteligencia artificial del Play Store. La parte buena es que gracias a sus capacidades, será mucho más rápido que la competencia en las tareas optimizadas.
En conclusión, los beneficios del NPU son muy reales para el usuario, pero el problema es que probablemente los poseedores del Huawei Mate 10 no serán los primeros en aprovecharlo a fondo, sino que habrá que esperar más tiempo para que el ecosistema haya acogido e interiorizado estos cambios. A día de hoy, cuando no suma, al menos no resta, y eso de que un avance no sacrifique en absoluto está muy bien.
Suscríbete a la newsletter diaria de Hipertextual. Recibe todos los días en tu correo lo más importante y lo más relevante de la tecnología, la ciencia y la cultura digital.